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Abstract 

The hypercomplex numbers associated with the Dirac-Clifford algebra, are applied to the 
spin-0, 2½, and -1 structures for Schwinger's source theory of quantum electrodynamics. 
The generalizations to 5-vectors and 5-space relativity are introduced. 35tie anticommuting 
numbers, associated with Fermi-Dirac statistics, are examined in some detail. The hyper- 
complex number formulation is suitable for curved space quantum computations. 

1. Introduction 

In our recent explorations of  the hypercomplex number structure of  
relativistic quantum physics (Edmonds, 1974, 1975), we considered only 
coupled partial differential equations. Though this is very important, it is only 
the first step in developing a quantum theory. This is because the fields, 
described by  the partial differential equations, are not observable by humans. 
Only in nonrelativistic quantum physics (chemistry/physistry) is it useful to 
consider 1 ¢ 12 as the probability distribution for "finding" the electrons. This 
leads to an atomic orbital picture with bumps (and directions) that are quite 
helpful in understanding molecular structure. The hydrogen atom may not, 
however, be a physical proton, o f  mass Mp, coupled to an orbiting physical 
electron, of  mass Me, by an electromagnetic photon field, of  mass M 3, = 0. 
A hydrogen atom is a stable, spin-0 "quantum,"  of  mass 21~¢ < Mp + Me. This 
"explains" why it does not decay into e- + p+, in the same way that 
Mp < M n + Me "explains" why p+ -> n + e + does not occur. It is well known 
that n -+ p+ + e- + ~, yet we certainly do not " think" of  the neutron as com- 
posed of  orbiting p*, e-, ~ constituents. One can argue elegantly that it is no 
more "correct" to think of  hydrogen in terms of  a few simple parts in orbit. 
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But once we admit that hydrogen is a quantum, then H 2 is also. There is no 
stopping; even the earth is a quantum! Clearly this is not a useful concept. We 
must find some line between quanta and particles. There is a useful concept 
for drawing this line. We know that protons have a radius of 1.2 fermis, in the 
sense that they pack in nuclei as if this were their size. This is the only real 
measure of  the size of quanta. We know dimensionally that h/mc has the units 
of length. We, therefore, postulate that ?on --- const = 2(1.2) x 10-1Sm x 1.7 x 
10-27 kg, holds for all quanta. This gives the peculiar result that the heavier 
a quantum is, the smaller it is. Thus protons and neutrons are X = 2.4 F in 
diameter and electrons are (2.4 F) (Mp/Me) ~ 0.48 x 10 -2 A ~ 10 -2 R0, the 
Bohr radius. We now define a particle to be a massive system that has an 
experimental size much larger than the quanta with the highest amplitude 
for being its constituents. Thus, H-~ e- + p+ ~ H, virtually, is most likely and 
experimentally H is about 1 A in diameter, when packed into a solid form. 
This gives a volume about (102) 3 = 106 times that of  the e-p + combination. 
Thus, by our definition, hydrogen and all atoms are composite particles. 
Notice that n ~+ per  -~ n, virtually, has Xn < Xe, therefore n is a quantum 
(consider also n -+ p+n- -+ n). 

When particles are broken, their parts rearrange themselves, e.g., H20 -+ 
H + H + O, whereas when quanta decay, the products are created, e.g., n -+ p+ + 
e- + F. Particles, or clusters of particles, are directly observable for humans 
and should be considered as the sources and sinks for quanta. This is not 
aesthetically satisfying, since we would like to think of nature having structure 
and interaction only at the quantum level. But physics is not yet ready to 
attack nature in this way. 

The point is that physics has had to face the mathematically difficult idea 
of particle creation and destruction, something which coupled partial 
differential equations cannot capture. Perhaps at some deeper level of dynamics 
the "partons" are indestructable and all "observed" quanta can be described 
in analogy to the way we build up the periodic chart. This is just not known 
at present. Quantum electrodynamics is successful to six or eight digits and 
assumes that quanta are actually created by sources and annihilated by sinks. 
A quantum is a set of  quantum numbers moving through space-time in an 
approximately localized fashion. It can "be," momentarily, any combination 
of other quanta that together have the specified net values of the quantum 
numbers. From this point of view, the hydrogen atom is a virtual swarm of 
all the quantum "particles" known to physics. (The boot-strap philosophy 
carries this a step farther and takes as an article of faith the idea that "self- 
consistency" dictates the observed mass spectrum and quantum numbers of 
the "observed" quanta, whatever that means.) The hydrogen atom has a much 
larger probability amplitude to "exist" as a (p+e-) state than as a (nn+e -') or 
(p+e-e+e-), etc., state, but these other possibilities do contribute to its behavior, 
when measurements are made to several digit accuracy. 

The high-precision measurements are always classical many-body procedures. 
Humans cannot perceive anything else. No quanta are ever "seen." The "recoil" 
of a macro-body (particle or collection of particles) is observed, and classical 
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relativistic mechanics is then used to assign quantum numbers to the quantum 
responsible for the recoil. We say that a quantum was thus created (prepared) 
or annihilated (measured). 

Schwinger (1970) has beautifully developed this pragmatic, macro-oriented 
approach to quantum electrodynamics. He bypasses second quantization and 
and renormalization, while obtaining all the predictive power of tranditionaI 
quantum electrodynamics. The approach has special appeal for me, because it 
seems to be most naturally compatible with the hypercomplex number approach 
and because it avoids assumptions about microscopic regions of space-time, 
where I suspect curvature and higher dimensions will play an important role in 
future patton developments. 

Schwinger's approach builds on the mathematical form 

(0+10_) s = exp / i f ield(x)source(x)(dx) (1.1) 
z3  

where "field (x)source (x)" is a function of space-time, assumed invariant 
under Lorentz symmetry [(x) "~- {xU)], and ( d x ) -  dx°dxtdx2dx 3 describes 
integration over space and time. The complex number (0+[0_) is identified 
with the probability amplitude for the creation, propagation, interaction, and 
destruction of a particular set of quanta, prepared and destroyed by measured 
"sources." The specification of "source(x)" is where the dynamics enters. 

We shall not pursue this important, and still developing, aspect of the 
theory. In this paper we shall explore the possible structures for the term 
"field (x)source (x)" that are suggested by the hypercomplex number approach, 
to the field equations. This formulation will also generalize in a natural way 
to integrating over curved space-time, but we shall not discuss that here. We 
shall, near the end, consider the anticommuting nmnbers that Schwinger uses, 
in the integral appearing in equation (1.1), to build in Fermi-Dirac statistics. 

2. The Hypercomplex Operator 

We assume that the hypercomplex number system {eu, ieu, j~, ifu} with 
complex coefficients, is central to the theory. We further assume that 

P - ih(e~)~ ~ + ih(ifo)~ 4 =- P~ -+ L ~PL (2.1) 

is the central differential operator of the theory. A ten-parameter generalization 
of Lorentz symmetry is assumed, to restrict allowed wave equations, in the form 
LL" -= (eo). For simplicity we define 

P-paba ,  a = 0,1,2,3,4, {ha} = {%, (ifo)} (2.2) 

It is easy to show that 

(pip) _= 1 [(e ~p) + ( ) ]̂ = papa = P"Pu + P4P4 "+ L ^(PIP)L = (PIP) (2.3) 

( b a i b c ) =  + t ,  a = c = 0 

=-1,  a=c4=O 
= O, a p e  
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Though we shall not really need to consider the detailed structure of the 
operator P, a comment is in order on the unusual term ifi(ifo)~ 4. At our present 
primitive level of understanding of quantum physics, we do not know how to 
deal with this term. Instead we must replace it by mc(ifo), where m is the 
empirical mass quantum number of the quanta created by the sources we can 
manipulate. The macro-sources have measurable (classical) mass and are humanly 
observed to move in three-dimensional space as a "unit." Emissions and 
absorptions of quanta cause abrupt changes in these classical motions. We use 
these changes to assign a mass number to the quanta involved, though the 
quanta are never directly seen. We cannot be sure that the quanta themselves 
do not propagate in five-dimensional space-time. The structure of  the natural 
hypercomplex number system suggests five-space rotations as the natural 
group symmetry, with the (ifo) coordinate different from the other four (eu) 
in some fundamental way. It probably contains the scale setting length in 
nature. 

3. The Spin-½ Field 

The simplest covariant wave equation has the form 

P~ = r/(x), ¢, -+ L^¢,, r/--> L~r/ (3.1) 

For historical reasons, this is called spin-½. The field if(x) and its source r~(x) 
are both multiplied only  from the left, and thus have a I x 4 matrix representa- 
tion. We can express this as 

t~ - ~ aga, ~ =- ~Taga, a = 1,2,3,4 (3.2) 

An explicit representation for Ca) in terms of {eu, ie~,f~, ifg} can be obtained 
by noting that i(ie3) (ifo) = (ifo)i(ie3). Thus ff can be chosen as an eigenstate of 
these when ihOk~ = 0, k = 1,2,3. These are called spin up/down and particle/ 
antiparticle states. Once {ga} is chosen, we can easily work out the multiplica- 
tion table for this set and {eu, ieu, f ~, if~). For those wave functions that have 
ihO4tP = 0, we choose i(ie3) and i(ieo) to obtain eigenstates. 

Now we define the corresponding integral equation for ~: 

=- dx  ' " " d x  4 '  (3.3) ~(x) -z ~ a(x, x')~(x') (dx'), (dx') o, 

For L symmetry covariance, we must have 

G -+ f f G L  t ~ ~ G ~ =- +-G is possible (3.4) 

Therefore, we can define 
G -~ G a b g a g t b  , G ab - +-G ba 

To obtain the equation satisfied by G, we operate on equation (3.3) 

P ( x ) ~ ( x )  = f P ( x ) G ( x ,  x')r~(x') (dx ')  = ~(x) (3.5) 

which is consistent with 

P ( x ) G ( x ,  x ' )  -- fi(x, x ' )  (eo) (3.6) 
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Since the right-hand side is proportional to (eo) and PP ~ is also proportional 
to (eo) we are led to define 

G - P"A(X, x ')  -+ ffP~L t ~zS(x, x')'  - L~P"~x(x, x ' )L  t^ (3.7) 

Therefore, A(x, x ')  is invariant and proportional to (eo). It satisfies 

PP'A(x, x') = 3(x, x') (eo) = PaPa(eo)A, a = 0,1,2,3,4 (3.8) 

Now we define 6(x, x ' )  t -- 5(x, x'), which leads to A = A t and 

( ec , )  = = c P= = a(x,x ' )  (eo) (3.9) 
K--- 

So, for consistency, we must have 

G t =- +G, Gab = +G ha, or alternatively G = Gab a (3.10) 

Now we are prepared to guess at the proper form for field (x) source (x) ~x (eo) 
and invariant, in equation (1.1): We try 

f field(x) source(x) (dx) = f ~(x)trl(x)(dx) (3.1 t) 

This works because ~(x)t~7(x)-+ (/,~q2)tLt~? = q2tL~tLtrl = ~ ,  and ( )t is like 
Hermitian conjugation, and ~b, r/have 1 x 4 matrix representations. As stated 
earlier, the dynamics enters through the source terms. The Green's function G 
can be obtained from A(x, x') and appropriate boundary conditions. We, there- 
fore, express the transition amplitude totally in terms of the unspecified 
sources: 

J/t~ = f ~7 (x')tG (x, x ' )~  (x) (dx')(dx) (3.12) 

where G -= G t has again been used. One further assumption is necessary. What 
number system do we use for dx, Gab, and r~a? The ordinary real and complex 
numbers are used for dx and Gab, but, with Schwinger, we make the drastic 
assumption that nature requires another system for r~a(x). This "complex" 
system has anticommuting numbers, ab = -ba,  aa = -aa = 0. (!) This is how 
Schwinger introduces Fermi-Dirac statistics for the quanta described by qJ(x). 
Notice that a pair of Schwinger numbers, ab, commutes with all other numbers 
and, therefore, f ~tr~ is an ordinary number, though ~ and r~ are not. We also 
define the Schwinger numbers to commute with the hypercomplex numbers: 

(x) =~ na(x)ga =- garla(x) (3.13) 
a 0 1 The expression ~7 (x) represents a mapping from the real numbers (x , x , x 2, 

3 4 1 2 3 4 x , x ) to the Schwinger numbers (7 , r / ,  ~1 , 7? ). We shall consider these 
further at the end of our discussion. 

4. The Spin-O Field 

The next simplest covariant wave equation has the form 

PP^~ = K (x), ¢ -+ 6, K -+ K, PP~ -+ PP~ (4.t) 



916 JAMES D. EDMONDS, JR. 

For historical reasons, this is called spin 0. The field ~ and its source K can be 
thought of  as "representations" of  the form 

¢) -~ ~)' - L¢ ~L *%= L*L ~ )  = ~b ~ ~b = (eo) (4.2) 

The question now arises as to whether ~b should be an eigenstate of  some 
particle-antiparticle operator, such as i(ieo). This does not  appear to fit the 
properties of  ~b above, so probably this field should represent spin-0 particles 
which are their own antiparticle, such as n o . 

It is easy to see that the integral equation for ~b(x) is given by 

~(x) -- f A(x, x')K(x')(dx') (4.3) 
since this gives 

PP~O(x)= f (PP*A)K(dx')= f s(x,x ' )K(x')(dx ') (4.4) 

using equation (3.8). It isgenerally considered that spin 0 is the simplest field 
to describe. However, PP is not simple in curved space. The proper covariant 
derivative must be defined so that P" =~aba(x)* is operated on correctly by P. 

Finally then, we guess at the transition amplitude expression 

j" field(x)source (x) =- f (~(x)K(x)(dx) = f K (x')A(x, x ' )K (x)(dx')(dx) (4.5) 

Is this all that can be said about spin 0. 9 What about the quanta ~r+zr, where 
there are distinct antiparticles? Above we made the strong assumption that 
~b --- ~b t =- ~b ̂. We should also consider the more general possibility ~ ~ ~b, which 
means that q5 is proportional to {eo, ieo, f~}. But (eo) is invariant, so we have 
the 5-vector field ~-~ Lt~L -t, ~=- +~. That ~b is a 5-vector follows from 
Oeo) x {ieo, fu} = {ifo, e~},foL = L'f~ and the fact that ( {e,,, ifo) is the basis 
for the 5-veCtor P ~ LtPL). Since D+~ieo)L ~t = Lt(L~') ~t (ieo) -= £~L't(ieo), we 
see that if  L ~ = L ̂ , then (leo) would be invariant. This is the six-parameter 
Lorentz subgroup, LL" = LL" = (eo). Traditionally, this has been assumed to be 
the physical group. In this case (eo) and (ieo) are both invariant. For this 
restricted group 

- ~+ [eo + i(ieo)] + ~_[eo - i(ieo)] (4.6) 

would give + 1 eigenstates of  i(ieo), corresponding to particles and antiparticles. 
This could be taken as evidence that the restriction L ̂  = L" is physically 

necessary, since charged, spin-0 pions exist! However, it was not necessar.y to 
assume that ~b -~ L¢SI3 ~. Only the left-hand L t is required to match the PP 
transformation. The possibility ~b -~ Ltq~ will not be considered, since this is 
essentially spin ½. We should consider, though, 

0 -*O':L~OL-OL'L=O - + 0  ~ c~(fo) (4.7) 

which also gives an invariant representation for the full 10-parameter group. 
It is possible, therefore, to postulate that the zr+zr - quanta are mixtures of  the 
~b and 0 fields. In this case, the particle-antiparticle operator is (fo), since 

(fo)[eo +fo] = +1 [eo +fo] and (fo)[eo - f o ]  = - 1  [eo - fo] (4.8) 
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We therefore guess that the spin-0 transition amplitude also contains 

iS(x ' )A(x ,x ' )S(x)(dx ' ) (dx) ,  S(x)-+ f f S L - L ~ L ~ ' S - S o : ( f o )  (4.9) 

with 

O(x) =-f A(x, x')S(x')(dx'),  S(x') oc (fo) (4.10) 

For Bose-Einstein statistics, we assume that K and S have ordinary, commuting 
number coefficients. Notice that we have two distinct types of spin-0 quanta, 
corresponding to e-e + (spins opposite), and e - e -  (spins opposite). 

5. The Spin-1 Field 

Just as we have formulated two covariant solutions to the spin-0 wave 
equation, by altering the covariance structure of the source, we can replace 

-~ L*~7 by J ~ L*JL, to obtain another solution to the Dirac equation 

P F - J ,  J-+J'=-LtJL, ~ F - ~ F ' = f f F L  (5.1) 

We have two special forms, F = -+F'. For F =  + F ,  we have the possibility 
F oc eo and invariant, and the possibility o f F  containing {ieo, f-s}, which gives 
a 5-vector. The other possibility, F = - F ,  contains {ek, iek, if, s}. Traditionally, 
the e~ and iek components are associated with E k and Bk: 

Ee(ek) + Bk(iek) -~ ½(F + FVA), F -~ - F  ^ (5.2) 

Under the Lorentz subgroup, (ieo) is invariant and {ek, iee} will mix with 
itself as does {f-s}. 

We now split the source into two parts, J ~ Jc + JN, and compute 

p~pF=p 'J=(PIP)F~(PLP)(F+F^)=(PIJ )=(PiJc )+(PIJN)  (5.3) 

We conclude that F -  - F "  has a "conserved" source (PIJe) -= 0. We shall con- 
centrate only on this type of source, since it apparently applies to electro- 
magnetism. Actually, to this point we have only required that J-+ L*JL, which 
gives the simple possibilities J = -+J*. Electromagnetism further assumes that 
J -  + f  is appropriate, as a source restriction, and (PIo r) - 0. 

Because F = - F  ~ and F ~ f fFL t .  we could write F in the form 

F =- Faeb~e, F ae =- - F  ea (5.4) 

since ba ~ LCbaL and (babe)" = bcba. 
Next we try to construct an integral equation for F, with source J=-Jab a - . j r  

and (Plf)  - O. The second condition is met by the form 

F - ½ f [ H ( x , x ' ) J ( x ' ) - J ~ t t ^ I ( d x ' ) ~ H - > H ' - ~ L ~ I t L  *t (5.5) 

Notice next that H transforms as P~. We could try H = Habgag~b, H at) - +H ha, 
but by analogy with the spin-½ case we are tempted to try 

H(x, x ' )  - p ( x ) ~ ( x ,  x'), 4x(x, x ')  ~ (eo) (5.6) 
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Then H =  H*, and we must find the equation satisfied by~(x ,  x'). This must 
come from the field equation 

PF = J = f J(x')8(x, x')(dx') = ½ f [(PP~4x)J - PfP&] (dx') (5.7) 

Here J = Ja(x')ba is an independent function except that pa(x')J(x')a = O. 
Therefore, we should be able to extract a second-order equation for+(x,  x ' )  
from equation (5.7). Notice that P = P(x) and J = J(x'), so P does not operate 
on J in equation (5.7). We can use b~be = 2(ha l b c) -bcba on the second term 
PJP, if useful. 

It is easy to check, by direct computation, that HJ in the form {e u, i f  o ) x 
(e u, ifo} gives {co, ek, iek, ifu}. Thus the troublesome second term in equation 
(5.5) is needed to remove only the (%) terms in HJ. 

Now we are ready to guess at the invariant probability amplitude expression 
field (x) source (x). The simplest possibility would be 

f J(x')a~(x, x')d(x)a(dx')(dx ) (5.8) 

This is both invafiant and proportional to (eo). However, it is not "elegant" in 
the sense that the full hypercomplex numbers do not appear. They are probably 
necessary in curved space, so we would like to have an expression in terms of 
J and H. A choice like 

½f [J(x'fII(x, x')foJ(x)l + [ ]" (5.9) 

would be in the spirit of equation (5.8), except that L'(A + A)L  is equal to 
A + A" only ifA + A" is proportional to (Co). For quaternions, there is no 
problem. However, rest mass required us to extend the quaternions from 8- to 
a 16-part number system. Now (A + A") = ( )A implies, in general, only that 
A + A" ~ {Co, ieo,fu}. We can remove the (f~z) possibility by the form (A + A ̂ ) + 
( )" but this introduces (L^( )L)" = LV( )L". Again, we see that this 
approach is consistent only for the Lorentz subgroup, where f f  -= L ~, Since 
(0+l 0_) is directly related to predictions about macro-measurements made by hu- 
mans, who only see three-dimensional space, perhaps it is appropriate to require thw 
(0+IOD be only Lorentz invariant, whereas we postulate that the field equations 
are Lf f  = (eo) covariant. Note, however, that FfoJ~ (ek, iek, fu} x fox {e u, ifo} = 
{eo, iek, ek, ifu}, so the form ½f [(Fro J) + ( ) '] is preferable to equation (5.9). 

6. The Spin-1' Field 

The spin-1 field equation, PF = or, contains ihb4(ifo) and can, therefore, have 
particle-antiparticle eigenstates of (ifo). [If the quanta are massless, ihb4F- 0, 
then (ieo) commutes with P and can be used for the particle-antiparticle 
operator.] Such quanta are analogous to two spin-up electrons or two anti- 
electrons. As with spin-0, we also have the kind of quanta anloagous to an 
electron and position, both spin up. This quantum is its own antiparticle, 
and hence has less "internal" structure. We might, therefore, expect a second- 
order wave equation. But PP~ = K has already been used for spin-0. The other 
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spin-1 field F has a source J-+ LtJL. If we adopt this for our new spin-1 field, 
A, we should start with 

PP~A = d = PAPA = (PiP)A (6.1) 

This requires thatA -+ LtAL. Again we have the choice d = +-f. This would 
result in A = -+A t, which requires (e~, ifo, fo } or (ie~,fk, ifk}. Since F already 
has 10 components and A should be "simpler," we choose A - +A t, which 
means that Y = + f .  Again we reject J cc (fo), since this is invariant under 
Lt( )L and represents spin-0. We therefore assume that J and A are 5-vectors. 
But then (P[A) = (eo) is invariant, so that PP~A could be supplemented by 
P(PIA). Again a choice must be made. 

The spin-1 field F h a d  (Pla r) = 0 in order that F = - F  ~. We shall assume 
that (PIJ)  = 0 holds for the field A also. This requires 

(PIP)A - P(P[A) = J = A(P[P) - P(PM) (6.2) 
+ -  

In etectrodynamics, one usualty chooses instead 

(PIP)A =-J, P(PIA) - 0 (6.3) 

and calls the second equation the Lorentz gauge condition. Equation (6.2) is 
a weaker condition on A and more compatible with the form of  the other 
wave equations we have constructed. I suspect that it is more correct in the 
fully coupled (curved space) field theory. 

Now we are ready to construct an integral equation for A. We try 

A(x)  =- ½ f [J(x')D(x, x')  + (JD)* ] (dx') =~ D "-," IfDL (6.4) 

Now D = -+D" is a possibility. Further, for D = +D ̂  we can have D-+L~DL = 
L'LD, which would mean D proportional to (eo) and invariant. This is 
traditionally done, but it requires that A be "paraUel" to J, which seems 
reasonable from equation (6.3), but  not from equation (6.2). The general 
case D = +D" would produce {e~, ieu, fu, ifu} in the product JD and the term 
(JD) ¢ would leave {% ifo, fo}. The term (fo) would make (PIA) not proportionaJ 
to (%). This problem does not arise with the choice D ~ - D  ~ since {eu,/)t o} x 
(ek, iex, i f  u} = {eu, ieu, ifu, fk}. Only the term (fo) is missing. Now adding (JD) ¢ 
would leave {eu, ifo}, as desired for A. We, therefore, assume that D -- - D  ~. 

By combining equation (6.2), equation (6.4), and J=f3(x ,  x')J(x')(dx') ,  
we can construct a second-order equation for D =-½DaCbabc, D ac =-- - D ca, 
along the lines used forz~(x, x'). 

Now we consider the probability amplitude expression. We guess 

f (A iJ)(dx) = ¼ f J(x')D(x,x')d(x)~(dx')(dx) + . ."  (6.5) 

for f field(x) source(x), 
This completes our outline of  the spin-1 system. The question naturally 

arises as to how F and A are related. Both have 5-vector sources J that are 
"conserved." Do they invariably have the same source, so that both quanta 
are always produced together? We could guess that 

F =  ½ [(P14) - ( )'] = - [ ]" (6.6) 
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which would lead to (Edmonds, 1975) 

PF = P½ [(P~I) - ( )'1 = JA (6.7) 

This would make JA = JF, which should make one of  the fields unnecessary. 
In fact, the traditional coupling P~ ~ (P - eA)ff suggests that F is unnecessary. 
But perhaps F is more general than equation (6.6) would suggest or perhaps 
JA is a 6-vector, or is not conserved, so that equation (6.6) is not valid. There 
should be two types of  spin-1 quanta, some that are their own antiparticle and 
some that are not. I, therefore, remain hopeful that some basic distinction 
will be found between F and A, e.g., Jf  - JA + JN, J~ = -JN ~ O, so that 
F ¢  - F ,  even though (PtJA) = 0. 

7. Ant icommuting Numbers 

The ordinary complex numbers are built on several assumptions: 
a(b + c)=-ab +ac,a + b = b  + a, a b - b a ,  O(a)=-O, l ( a ) = a , a  + O=--a,a + (-a)=-O, 
(a-1)(a) = 1, ia = ai, ii =-- ( - 1 ) ,  (ab ) * =- b 'a*  = a'b*, (i)* =- ( - i ) ,  and exp (a) - 
~an/n!.This particular number system has proven to be a powerful aid for 
engineering and classical physics. It now appears that it is "insufficient" for 
quantum physics. To build up the complex numbers, we begin with {1,0, - 1 ,  
i, 0~ - i} .  We can nowprove  that ( - ) ( - )  = (+) and define 2 = 1 + 1, - 2  = 
- 1  + - 1 ,  2i -= (i + i), and ( - 2  0 --=- ( - i )  + ( - i ) .  Actually, only 2 ~ 1 + 1 is neces- 
sary, since i(2) = i(1 + 1) = i + i, etc., follow from the distributive law. The 
important thing is that 2 is not equal to any of  the other numbers already 
existing. Then 2 + t is again a new quantity, and we generate a countably 
infinite set of  numbers this way. 

The rational numbers form a dense, closed algebra and naturally fit the 
concept of  position in one dimension, - ~  < x < + co. The imaginary numbers 
can be motivated by the desire to find numbers that, times themselves, give all 
the real numbers. Thus (i)(i) - ( - 1 )  is sufficient to do this. If  we then try to 
construct numbers that times themselves give the imaginary numbers,  we find 
that they exist within the complex numbers, formed by a linear combination 
of real and imaginary numbers. But what about (0i)? Clearly (0/)(0i) 
(0)(0)(i)(i)  = ( 0 ) ( - 1 )  = 0, and (0)(0i) - (0)(0)(i) = (0i). Now, we know that 
(0)(5) = 0 and 0(5i) = 0(5)(0 = 0(0 = (00. Can we say that  (0i) " (0)? I f  so, 
then the imaginary number line is not entirely distinct from the real number 
line, or alternatively the imaginary number line has no zero position on it. 
One can sense an incompleteness in the number  system so defined. Let us 
define (00 =~ (0) so that  the imaginary number line is completely distinct 
from the real number line. Once we do this, we find our system is still in- 
complete in the sense that no complex number exists, which times itself gives 
(0i); x 2 - (0/). This is like the original problem, x 2 = ( - 1 ) ,  which required 
the introduction of the imaginaries. The natural solution is the introduction 
of another set of  numbers, incredible as it may seem. In analogy with the 
way the imaginaries got their name, we shall call these the incredible numbers. 
We define (~)(~) -= (0/) and i(~) ==- (/5). Then (i8)(5) = i(~8) = i(Oi) = ii(O) = O. 
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Therefore, 6 ~ i5. We have both  incredibles, and imaginary incredibles, 
and an incredible, times an imaginary incredible, gives a real number. 
Since (0)(/) - (0i), we define (0)(6) - (06) and (.+1)(6) ~- (_+6). There- 
fore, 6 + ( - 6 )  - [16 + ( -1 )6 ]  --- (0)6 = (06) ¢ 0 4= (0i) 4: (0i6). The 
question then arises as to whether there is any difference between 6 and (06). 
Notice that (06) = (0)(8) = ( - 0 ) 6  = ( - 1 ) ( 0 ) 6  = ( - 1 ) ( 0 6 )  = - (08 ) ,  whereas 
6 = (18) = ( t )6  v s ( - 1 ) 6  = ( - 6 ) .  So they are distinct. We conclude that 
x 2 = (0i) = - -(0i) has six solutions: x = 6, - 6 ,  (06), (i6), ( - i 6 )  and (0i6). 

The next thing to do, would be to t ry and expand the incredible number 
system. We naturally define 26 ~ (6 + 6), 6(8 + 8) -= 62 + 6 2. Then (26)(26) = 
466 = 4(00 = (0i). Also ( - 6 ) ( 2 8 )  = 2 ( -6 ) (6 )  = -2 (66 )  = -2 (0 i )  = (0i). In every 
way 26 acts like 6, so we can conclude that 26 = 6. Recall that (N)(0)  = 0 but 
(~')(0) = ?(0 or o~). Similarly, N6 = 6 but (°°)(8) = ? By now you have probably 
noticed a similarity between (6 ,06 ,  - 6 ,  i6, 0i6, - i6  } and the physicists' 
infinitesimal {dx, Odx, ~dx, idx, Oidx, - i d x  }. The only difference is that (dx) x 
(dx) ~ 0 instead of ~ (0i), but this amounts to the same thing in all practical 
calculations. Mathematicians call the rigorous use of  differentials "nonstandard 
mathematics."  Actually they are needed to "comple te"  the complex number 
system and should be part of  standard algebra and calculus. They should also 
be part of  physics! 

They have been used, indirectly, to define differentiation 

d f = d x  dr(x)  (dx) lim f ( x  + d x ) - f ( x ) = f ( x  
- -  =- + 6 ) - f ( x )  (7.t) 
dx dx--~ o dx 

Here f ( x )  ~ y is a real number. Suppose we choose the function f ( x )  =- x, then 
f ( x  + 6) - f ( x )  = x + 8 - x = 8 = dr= dy. Thus {y) should include the {8's}, 
since f ( x )  - x, evaluated at x = (0 + 6), would give y = f ( x )  = 0 + 6 = 6. 

Now suppose that we define a function if(x), for which the values of  ff are 
restricted to the incredibles, {6,06, - 8 , / 8 , 0 i 6 ,  - i6  } and x ranges over the 
reals and incredibles. Then ~(Xa) ¢ ~(x2) in general for x 1 4: x>  However, 
~(x i )~ (x l )  = (0/). In fact, ~(xl)ff(x2) = (0/) or (0) for a n y x  1 and x> (!) 

The incredibtes, as defined so far, can be used to build a rigorous base for 
differential and integral calculus. This is valuable for physics, but we need 
more. The Pauli exclusion principle is responsible for the existence of chemistry 
(and even humans who can study the nature of  existence). To include it in the 
physics, we apparently need special numbers: ~(xl)~(x2)  - - ~ ( x 2 ) ~ ( x l )  4= O. 
We can try to define them as follows: Replace 8 by 61. Then (81)(6a) = (0i). 

We have assumed that i(6) = (/6) = (6)i in defining 6, but since ai1 products 
involving 6 Nve zero, we have had no real tests of  this property.  We now 
introduce 62 4: 81, with 6262 -= (0 0.  Let us assume that 616 z -=/12 ~ -6261 = 
-/a~ = -/2a 4= (0i). Now 6a + 81 ~ 6a and we generate an infinite set of  61's 
and 62's by defining 6162 4= Oi. Even 0i6~ might be distinct from 0/6> We shall 
assume that 0i51 - 0i3> Our system now contains R6~, R 6 2 , - R 6 1 ,  - R S >  
R6i  1, Ri6> - R @ ,  -Ri62, 061 =- 052, 0i61 - 0 i 6 2 ,  where R is any integer, and 
perhaps we could extend this to the rationals. 
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Right away we see that associativity is lost, since (616D82 = (0062 - (0i62) , 
whereas 61(6162) = 61/12 = 81(iR12) = (i81)R12 and R12 v~ 0, by assumption. 
(Note that the 2 x 2 raising and lowering matrices are like this: (a+o+)cr_ = 
( 0 ) ~  = 0 but o+(o+o_) = ~+(1) = e+ @ 0. Matrix multiplication is not associative 
in this circumstance.) Loss of  associativity is very serious. Schwinger keeps 
both associativity and distributivity. Without the distributive law, we cannot 
evaluate 

(81 + 62)(61 + 62) = 6661 + 6261 + 6~62 + 8282 = 0i + --8162 + 6162 + 0i = 0i 

61(82 +62) = 6162 +6162 --112 +/12 = 2/12 :¢:/12 g=0i (7,2) 

so we must accept it as valid. 
If 3162 - ei, then (6162)(6162)(6162)(6162) = e 4 and further products move 

toward 0 for e < 1, remain at 1 for e = 1, or move toward ~ if e > 1. It is not 
clear what value of  e should be chosen. Unless e ¢ 0, we have f~*71(dx) = 
fO(dx) = 0, since ~(x)a~(x') e -  -~7(x')e~(x) a in Schwinger's approach. It is 
also not clear at this point if there is a need for other numbers 83 :~ 62 ~ 61, 
8362 =/32 , etc., but see below. 

Schwinger takes a more naive approach to the incredible numbers and 
never tries to actually "construct" one. He simply assumes ~(x)rl(x') = 
-,7(x )n(x). He assumes [n(x)n(x )] = n(x ) ~ ( x ) .  He assumes [~l(X) + 
n2(x) ]  a [nl (X')  + n2(x ' ) ]  = ,7~(x)Grll(X') + r~2(x)G~l(X') + rh(x)Cr~2(x') + 
r~2(x )Grl2(x' ). He assumes 

rl(p) =- ~ (dx) exp (-ip~x~)rT(x) (7.3) 

is well defined and exp (-ipUxu)n(x) = ~?(x) exp (-ipUx,). He assumes that in 

rlpo = (2mdcop)l/2u~a~(P) (7.4) 

the real number 

1 ,J2 
(2mdoop) 1/2 - 2m (270 3 2pO ] (7,5) 

is meaningful here in determining the "value" o f  the complex incredible ~pa, 
* and r~(p) are which is equivalent to assuming that 5*l(p) =/= ~(p). [Actually Upo 

4 x 1 and 1 x 4 matrices; but this is not important here. We are interested in 
how the numbers in the matrices multiply. The incredible numbers r/p~ are 
not matrices.] He obtains the physical amplitude for spin (u) and momentum 
(p) eigen production and annihilation, under the action o f  source/sinks 
r h and r/2 in the form 

<O+[O_)rh +n~ = exp [iW(~)I, W(~)- l j (dx) (dx ' ) [~l (x)+~2(x)]G(x ,x  ') 

x [nl(X')  + n2(x ' ) ]  -- ~(dx)(dx')[nl(X)ar~(x ')  + ra(x)Gn2(x') 

+ r12(x)Grlt(x') + r12(x)G~72(x')] (7.6) 
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He then assumes for "physical"  reasons that  ~Ta(x)Grl2(x') = ~?2(x)G~l(x'), 
giving 

(0+10_) n~ +n~ = exp (dx)(dx')711(x)G~l(x') exp i (dx)(dx')~1(x)G712(x') 

i [ '  r r 
~|(dx)(dxo )~2(x)G~2(x ) (7.7) X e x p  

= (0+I 0- )n ' (  exp p,o ~ irl*lpaiT~2pa)(O+lO_} rh 

He a s s u m e s  Tlpa~p, a, = -rlp,a,T]pa, "OpaTlp'a' = --~'lp,o,~lpa, and ~lpaT?p'a' = 
--r~p'o'~Tpo. [This probably can be deduced from equations (7.3) and (7.4).] 

* e . . . . .  Obviously, TllpaT~2pa =i h O, oth rw~se there is no interesting physacs here. 
He then defines 

eXp [ p~,a(i~?~Pair12Pa) ] =" ~I exp (7.8) 

which is all right, s i n c e  (f/lpaT~2pa) 1S an "ord inary"  commuting complex 
number.  Now he defines 

(t~llpd~2p~) = (7.9) exp . * • - . * • n (mlpdr~2po) 
et 

The Fermi-Dirac statistics are obtained because n = 0 or 1 only. But this only 
follows by  assuming associative multiplication 

. ,  . . ,  . _ . ,  . . ,  . _ . ,  . ,  . . 

(lT~lp~7l~2pa)(17~lpalT~2pa) -~- t~lpo(l~2palT~tpa)l~2pcr ~- --I~lpa(l~lpalT~2pcr) lT?2pa 

= -(tnapotnlpo)(tr12patn2pa) - -(Oi + 0)(0i  + 0) = - ( 0  + 0i) (7.10) 

We see that he has assumed associative multiplication and ~lpa~72pa @ O. 
(However, i f  this number  is an ordinary complex number,  then its square 
should not  be zero!) We now have 

exp ~ " * ' (lT~lpol~2pa) = I ~  (ir?~pai~2pa) npa, npo = 0 or 1 only 
p, cr p , a  

(7.1 t )  

since 0! ~ 1 and 1 ! = 1. Note again that * (~lpa~2po) is complex,  commuting and 
its square is zero. He now assumes that  the physical process of  creation and 
annihilation, by  the sources Th and ~2, can be expressed as 

(0+I0-) ~' +'~ -= E (0+l {n}) '~ ({n}lO-)  n~ (7.12) 
{.} 

Then 

I - I  • * . t t  . * . n . .  * • n b (t~71aZn2a) a = (t~at~72a) a~zrhbt~72b ) . . .  (7.13) 
a 

Again he assumes the use of  associative multiplication by  writing 

(ir~air12a)(i~7~bi~2b)=_' * . *  . . . .  , . *  . . l~71b(t~lalrl2a)tr?2b = (l$?lbt~la)(t~2atr?2b) (7.14) 
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He also assumes (~71~2) ° = 1, which is all right since rhr h is an "ordinary" 
number. We, therefore, consider only occupied p o  states in IIa,  which gives 

I ~  ( i~ai~72a)  na = (  " * ' *  " *  " " " " ""  " l ? 7 1 e l ~ l b l f l l a ) ( t 1 7 2 a l ? 7 2 b l l ' 1 2 c  • " ) (7.15) 
a 

Comparing equations (7.15), (7.12), (7.11), and (7.7), he now a s s u m e s  the 
division 

( { a ,  b ,  c . . . .  } 10-} n2 ~_ (O+lO_}/ )~( i~hai~2birhc  . • .  ) 

( 0 + 1  {a ,  b ,  c . . . .  }}/)1 ~ ( 0 + ]  0_ ) / )1  ( "  • " l l ' ] l c l T ~ l b l T I l a )  (7.16) 

is physical. Notice that (0+10_} involved only pairs o f  7h~h. It, therefore, is an 
"ordinary" complex number. But ({a, b, c} 10_} is proportional to the product 
of three ~'s. It therefore is an incredible number also! Schwinger defines 

( {a, b,  c }  t0-}*=- (0_! (a, b, c}) (7.17) 

in analogy with the usual quantum assumption. The absolute value 

2 '  " < {a} t0_> < {a}t0_>* = t<0+10_>1 ll)a(--tl)a) (7.18) 

and 
• . ~ .. 
t~?a(--tna) = --ll~?ana = 0TaR + i~?aI)(?TaR -- i~TaI) = 0 + i~?afOaR -- i~TaR naI  + 0 

= 2i~Ta/r/an = 2(ir~aZ~aR) = "ordinary" real number (7.19) 

since an imaginary incredible times a real incredible, gives a real number. 
We see that the vector space i} must be generalized to include pseudoincredible 
vector coefficients. 

Notice in equation (7.16) that  % ¢ ~Tb ¢ ~c because the states created (or 
destroyed), a, b, c, are distinct states. Also we do not want the product 
~Ta~Tb~Tc " " " to be zero. We should expect that the probability amplitude for 
creating a large number of  quanta is smaller than that for creating a few quanta. 

rla~?a ~ t. This is also required by Schwinger's assumption This suggests that * 

l-I(0_[(n}} n ((n}[0_}/) ~(0_10_}~ 1 = (0+[0+} n (7.20) 
{.} 

Since t iara = 2t~aff/an, we conclude that (ir)az)r/a n < ½. Since (n} is a sum over 
an infinite number of  momentum states, we see t h a t  actually (i~ar)~TaR ~ 0. 
Therefore, this product may be something as pathological as Dirac's delta 
function 6(x) = 0 for x :/: 0 yet f 6 ( x ) d x  = 1. It appears then that we should 
define an infinite set of  pseudoincredibles 61, 62, 83 . . . . .  with ~rn6n --/= Oi unless 
m = n, but 6rn6n ~ Oi and (Oi)6rn ~ O, whatever that means! Schwinger's numbers 
are n o t  incredibles. Both the anticommuting % and commuting (r~ar~o) numbers 
can have zero for their square. They are completely distinct from complex 
numbers. It also appears that all the computational content of  quantum electro- 
dynamics can be extracted without ever facing up to the "numerical value" of  
~r/* since Schwinger claims his anticommuting number approach gives al l  the 
results obtained by the older operator field approach. 
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The next step is to relate, mathematically, the sources to particular physical 
situations. These "situations" take place in 3-space but create 4-space propa- 
gating quanta. The problem is to convert this into a numerically productive 
idea, whereby the masses o f  the detected quanta can be predicted. 
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